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I. INTRODUCTION

This report describes a system of computer programs for calculating three-dimensional
transonic flow over wings, including details of the laminar or turbulent flow in the three-
dimensional viscous boundary layer. The flow field is calculated in two overlapping

regions: an outer inviscid flow region governed by the transonic potential equation, and

a thin boundary layer in which the first order, three-dimensional, compressible boundary layer
equations are assumed to hold and in which the effects of surface heat and mass transfer can
be computed. A consistent matching of the solutions in the two regions is achieved iteratively,

thus taking into account viscous-inviscid interaction. The potential flow analysis is carried

out by the Jameson-Caughey transonic inviscid wing program FLO 27, and the boundary
layer analysis is performed by a finite difference boundary layer prediction program developed
at Boeing. For the wing application, interface programs provide for convenient communication
between the two basic flow analysis programs. The boundary layer program is general in
nature and can be used in a wide variety of applications in addition to the wing application
described in the present report.

The purpose of the present report is to provide a general overview of the system, including
detailed descriptions of the theoretical analyses embodied in the boundary layer and interface
programs (the inviscid wing program is described in detail in Reference 1). Readers

requiring detailed information on use of the programs or program structure are referred to the
Program User’s Document (Reference 2) and the Program Maintenance Document (Reference
3).



II. SYMBOLS AND ABBREVIATIONS

A coefficients in
B linearized momentum
C and energy equations
c kin friction coefficient T

£ skin friction coefficient = ——

1/2 peQe?
oW,
Cc* attachment line parameter = Ue2 [v a—e
vA

P ops s . p - poo
C pressure coefficient =———, ;

P 1/2pooQ002

also specific heat at
constant pressure
£, f velocity defect variable: £ = 1 - 2o
PeQe

) . . , pW

g.,8 velocity defect variable: g' =1 -
peQe
h enthalpy = CpT
hy, h3 metric coefficients
6* q2
H 2-D boundary layer shape factor - e ; also total enthalpy =h + 7
K ratio of adjacent intervals = i
M - 1

K13, K31 curvature coefficients
Ly, L7 arc lengths in x and z directions
M Mach number
p pressure
Pr Prandtl number
Pry turbulent Prandtl number
q,q velocity magnitude, velocity vector
q heat flux
Qe velocity magnitude in outer flow

r recovery factor (eqn. 6b)
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8*, Reynolds number = 2 mQe

Ve
Qe 5*m
v(n)

arc length along surface
temperature

velocity in x direction

velocity in outer flow direction

outer flow velocity in x direction
velocity in y direction (normal to surface)

velocity components from potential flow program

velocity in z direction

boundary layer spatial coordinate

Cartesian coordinates of potential flow data points

boundary layer spatial coordinate normal to surface
boundary layer spatial coordinate

flow angle relative to spanwise (x) coordinate line

flow angle relative to outer inviscid flow

displacement thickness

1 <l /3u\ 2 dw\ 2 172 dy
3-D boundary layer length scale = —-f y <—) + (—-)
Qe 0 oy oy
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=
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Vef)> Vefs
Vefl,

¢, %1, 93
®h

¢S’ ¢n
21,93

d

Subscripts:
e

oo

ref

Overbar:

Prime:

ratio of specific heats

von Karman constant = .41
normal direction coordinate
molcular kinematic viscosity

effective kinematic viscosities in x and z directions
effective thermal diffusivity
effective viscosity factors in boundary layer coordinate system

effective thermal diffusivity factor

effective viscosity factors in streamline coordinate system

o1 %
Rd ’ Rd

dummy variable illustrating difference expressions (pg. 15)
density

outer layer effective viscisity function

shear stresses in x and z directions
- 2,..2\"

shear stress magnitude = (77 + 73

inner layer effective viscosity variable

edge of boundary layer

far field reference

arbitrary reference condition

denotes quantities nondimensionalized by their values in the far field

()

denotes differentiation with respect to n



III. VISCOUS-INVISCID INTERACTION PROCEDURE

The basic sequence of calculations used to obtain matched viscous and inviscid solutions
consists of an iterative loop in which the inviscid outer flow analysis and the boundary layer
analysis are performed sequentially, until either convergence (satisfactory matching) is
achieved, or the maximum number of iterations specified by the user has been performed,

as shown schematically in figuré 1. In the first iteration, the potential flow is calculated for
the bare wing shape, and in subsequent iterations, the effect of the boundary layer flow on
the outer inviscid flow is felt as a modification to the wing shape through the addition of
the boundary layer displacement thickness 6 *. During each boundary layer calculation,

&* is computed by integration of the continuity equation. After this new §* distribution
has been interpolated from the boundary layer computational grid to the potential flow
geometry input stations, the 6* to be used for the next potential flow calculation is com-
puted as a weighted average of the new 6* and the 6* used for the previous iteration. Con-
vergence is recognized, and the iterations are stopped, when the maximum change between
the new and old 6%, expressed as a fraction of the maximum 6*, is less than the convergence
tolerance chosen by the user. At this point a final boundary layer calculation can be carried
out, if desired. This option allows, for example, the use of a fine boundary layer grid for
the final calculation, while, to save computing time, a course grid was used for calculating
the interaction. Finally, machine plotting programs can be called on to display intermediate
or final boundary layer results.

The procedure described above is carried out by a set of control cards (NOS procedure.file)
that loads and executes the various programs in the proper sequence and controls the flow
of data (disc storage files) between the programs. At the termination of the procedure,
sufficient data files are always saved to allow the iterative analysis to be re-started where it
left off, if, for example, the user decides the solutions have not yet converged adequately.
This feature also allows a user to run the procedure one iteration at a time, with an oppor-
tunity to examine the results of each iteration and to hasten the convergence of the proce-

dure by choosing a more nearly optimum §* weighting factor (under-relaxation factor) or
boundary layer grid configuration for each iteration.

The detailed convergence behavior of the procedure depends strongly on the internal con-
vergence behavior of the inviscid analysis program F1.O 27 and on the way in which FLO 27
is used in the procedure. Most importantly, the final convergence of the inviscid solution on
a fine grid in FLO 27 tends to be monotonic and can be very slow, especially if pronounced
shocks are present. Partly as a result of this slow convergence behavior in FLO 27, the most
economical way of reaching a matched viscous-inviscid solution is not to run the inviscid
analysis to convergence for every iteration of the interaction procedure, but rather to run

a relatively small number (between 10 and 50) of internal relaxation sweeps in the inviscid
code for each repetition of the boundary layer analysis (calculations presented in Section VII
illustrate this approach). Because of the resulting tendency of the inviscid solution not to
change drastically between boundary layer calculations, the interaction procedure generally
converges stably with an under-relaxation factor applied to 6* of about 0.5 to 0.8. The
number of iterations required to achieve a converged solution depends on the nature of the
flow, e.g., the presence or absence of shocks and/or boundary layer separation, and the
choice must be made on an individual basis. A case with entirely subcritical flow and no sep-
aration in early iterations can converge in three or four iterations, while a more difficult
supercritical case might require eight or ten.



IV. BOUNDARY LAYER PROGRAM

The boundary layer program uses a finite difference method to generate numerical solutions
to the three-dimensional, compressible boundary layer equations in curvilinear, orthogonal
coordinates for either laminar or turbulent flow. The structure of the program is dictated
primarily by the parabolic nature of the equations, which allows the solution to be generated
in a marching sequence, and by the nature of the initial conditions (initial velocity profiles),
which the three-dimensional equations require along any boundaries where fluid is flowing
into the computation region. For either the upper or lower surface of a swept wing, this
would generally mean that initial conditions would be required at boundaries along the

wing root and along the leading edge. On a wing with a blunt leading edge, however, a simpli-
fication is available that allows for a direct solution for the leading edge flow, reducing the
requirement for initial conditions to those along the wing root boundary. On a swept wing¢
with a blunt leading edge that is free of sharp breaks, the outer inviscid flow will contain a
surface attachment streamline near the leading edge along which an attachment line (line of
symmetry) boundary layer analysis is applicable (ref. 4). The attachment line analysis

aralagniia fa tha lominar gimilarity ndary lavear enliitinn at tha gtaonatinn sain

lD dlldlUsUUD Ly l.llC lailiiilial ouuucuu._y uuuuucu_y' la._y'cx o\uuuuu at lll\./ bLﬂleﬂLlUll PUlllt Uf a
two-dimensional, unswept airfoil. Because of spanwise flow in the swept wing case, the
attachment line boundary layer is not necessarily laminar, but can be turbulent for sufficiently
high values of the parameter C* (ref. 5). A module is included in the program for solving

the special boundary layer equations applicable to this attachment line flow for either

laminar or turbulent conditions.

The numerical method used in the program is implicit with regard to the solution in the coor-
dinate normal to the surface, and the differencing in the other two coordinates adapts to the
direction of the local velocity vector in a manner consistent with the zones of dependence
and influence in the goverring equations. The method is general in nature, and can be applied
in any surface-fitted orthogonal grid for which some mild restrictions on the velocity field

are satisfied and for which initial conditions sufficient to determine the boundary layer solu-
tion can be specified. When the attachment line analysis is used along the leading edge of a
swept wing, initial conditions are generally only required along the wing root, and the working
boundary layer grid for either the upper or lower surface of the wing must be constructed so
that the first spanwise coordinate line on the surface lies along the attachment streamline of
the outer inviscid flow. A boundary layer grid constructed in this way for a typical jet trans-
port wing is shown in figure 2. The grid shown was produced by the grid generation program
described in Section V.

The marching sequence generates the solution for one surface station (or column normal to
the surface) at a time. In this sequence the marching proceeds from root to tip along succes-
sive spanwise coordinate lines, or lines of constant z, starting with the attachment line and
proceeding to the trailing edge. This marching sequence and the types of difference expres-
sions used for the x and z derivatives lead to the following restrictions on the velocity field:

w>0 D
u -h AX
2 @)
w h3Az



at every point in the boundary layer. The program logic is set up to identify a forbidden
zone in the solution region and to forbid catculation for any vertical column where the solu-
tion does not satisfy the above restrictions at all points in the layer. Under some conditions
(to be discussed later) the boundary of such a forbidden zone will correspond approximately
to a separation line in the flow field. For attached flow over most common swept wing plan-
forms, using a working boundary layer grid of the type shown in figure 3.1, the solution is
not hampered by restrictions imposed by the numerical method.

For starting the calculations at the wing root boundary, two options are available:

1. The flow can be assumed three-dimensional. If no fluid is entering the computation
region through the boundary, the three-dimensional boundary layer equations can be
solved. Otherwise, initial conditions (initial velocity profiles) must be specified.

2. An infinite swept wing analysis can be performed along the boundary, in which the
spanwise (x direction) derivatives are set to zero.

A rigorously correct treatment would require option 1-with the initial conditions supplied
by an analysis of the viscous flow in the root region or by experimental measurements. In
the absence of such definitive information concerning the wing root flow, the only alter-
native is to start the calculations using a plausible guess for the initial conditions and to
acknowledge that the solution over some inboard portion of the wing may not reflect the
real flow. Comparisons presented in ref. 6, however, show that the portion of the

wing surface influenced by wing root initial conditions is generally small and that the choice
of these conditions is not usually of great importance. For most wing planforms, it suffices
to use the infinite swept wing analysis as a convenient wing root initial condition, even
through it is not a realistic physical model of the wing root flow.

BASIC EQUATIONS

The program solves the three-dimensional, compressible boundary layer equations in curvi-
linear orthogonal coordinates:

0 w 9 0 0 0

X momentum: pu o, P d + (pv)—u + puw](13_pw2K31 =_L op + 971 3)

hy ox hy oz oy hy ox oy

pu oW  pwW OW ow 1 op 073
momentum: — — +— — + (pv) — + puwK3q-pu2Kj3=-— — + —=2 4

z © h; 0x h3z oz (p )ay PUWE3L-PHUTRI3 h3 oz oy
tinuit a(hu)+a(h)+hh a() 0 (5)
continuity: — — w — = )

y ax \PO3 3z P01 113 5 pv
pu oH pw oH oH 0 oh 0

tl 1 P — + — — + _—= — — ) + — + 6a
hermal energy hy ox hs oz (ov) 3y oy (p Vefy ay) 5y (uTl W‘T3) (63



As an alternative to solving the thermal energy equation in cases with turbulent flow over
adiabatic surfaces, the program gives the user the option of using an algebraic formula for
the density:

.89 turbulent

6b
.84 laminar (60)

I
I
—
+
P
-
=
(¢
[\
N
—
|
l.a
N
N’
-
1]

In the above equations h] and h3 are the metric coefficients of the surface-fitted coordinate
system such that arc length along the surface is given by

ds2 = (hy dx)2 + (113 dz)2

and

1 oh)

K13= 152 %,
1h3 0z

1 0ohjs

K31=1 P
i1 hy ox

The thermal energy equation is expressed in total enthalpy form, where

2
H=CT+L
2

The boundary conditions applicable to equations (3) through (6) are

aoT aT
=w=0;(pv) = (pV)y; T=Ty or — = —| aty=0 7
u=w (pv) = (pV)y w O a5 - ay Wty (7
u—=> Ug woWe; T> T, as y >o0 (8)

The stresses 7] and 73 represent the total effective shear stresses, including both the mole-
cular shear stress and the Reynolds stress, and are expressed in terms of an effective viscosity
coefficient, as for example:

ou
T] T pVefl a_y

where

y
Vef] = V1 (]Tl’ﬁT)
m



Here v is the molecular kinematic viscosity, which for compressible flow is calculated as a
function of temperature by the Sutherland viscosity formula:

v _pref (T 3/2 Tiert+ 110
Vief p \T T+110

; Tindeg. K
ref

and ¢1, ¢3 are effective viscosity factors for which three options are available in the program:

1. Isotropic eddy viscosity model for turbulent flow: ¢1 =¢3 = ¢, where ¢ is an effective
viscosity function originally developed for use in two-dimensional flows and adapted as
described below.

2. “Non-isotropic” modification for turbulent flow: Separate ¢ and ¢3 are resolved such
that the component of the flow in the streamwise (outer flow) direction sees ¢ as in 1),
but the cross-flow component of flow sees a ¢ whose turbulent part is reduced by a con-
stant factor, generally .4. The expressions used for ¢ and ¢3 are equivalent to:

P =0
(qsn- 1)=0.4 é-1)
3. Laminar flow: ¢ =¢3=1.

The “non-isotropic’ modification for turbulent flow is discussed in more detail in ref.

6, where comparisons with two experimental flows are presented. Transition may be

treated in a crude fashion by using the laminar viscosity for some upstream portion of the
flow and then switching to the turbulent viscosity. As the program has no provision for pre-
dicting transition, its location must be specified as an input. For turbulent flow, the effective
viscosity function ¢ is an adaptation of the function used successfully by Mellor (ref. 7)

for two-dimensional flows:

k2y2 | ag o
p=0¢ - in the inner layer, and
v oy
6 *
¢=0¢ (Qev_m) in the outer layer.

For computational purposes, an alternate form of the above hypothesis is used, based on the
value of ¢ and the resulting shear stress at the previous step in the iterative solution scheme,
which is described in the next subsection. When the iterative solution converges, the two
forms of the hypothesis are completely equivalent. The detailed functions used in the alter-
nate form are:

x4

p—1 + ——
$=1+ 131693

in the inner layer,
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where
& %

C26) ()

and

Qe 8%
Ve

in the outer layer,

p=0

where o is a modification to the usual constant outer eddy viscosity for better predictions at
low Reynolds numbers:

0=.2143+.1378 logjg Rg*, + .O32<log10 Ry, )2 - _00248<Iog10R6*m)3,
m

and & ¥, is a three-dimensional outer layer length scale:

The inner layer is defined to end at the value of y where the inner layer ¢ crosses and becomes
greater than the outer layer ¢. The resulting composite ¢ thus has a discontinuity in slope,
but the numerical method is not adversely affected.

The heat flux g is expressed-in terms of an effective thermal diffusivity coefficient:

. ¢h
q=p Vefh EE ,

where
Vefh = v ¢h !

and ¢y, is related to the effective viscosity ¢ through the turbulent Prandit number Prr, which
is taken as a constant:

1 1
h = o +E (¢-1)

Pr; = constant, typically 0.9.

On the attachment line, the conventional plane of symmetry assumptions are made, leading
to the following set of equations:



d 0 -1 2 9 d
X momentum: fl—l: 6_1; + (pv)_l; LI a_y (p Vefa_l;) ©

. . o [ow\2 pu 0 [ow ow
z differentiated momentum: —{—) +— —I|—]) + (@ ) — =
h3 0X

oz hi oz 9z
ow 0K 13 1 32p ) ( 3 (ow
roapa() -2 B3 L2 ()
P 31u(az) pu 0z h3 0z ay P ef o0z (10)
0 ow 0
Continuity: o (ph )+](—)+h 2 =0 an
ontinuity 55 (Ph3u phy | 1h3 3y (ov)
™ ~ 1 T pu aH 1 Vs Ay aH a / \ Ve a3 Y
oy L _
Thermal Energy hy ax (ov) dy dy \ ur| , (12)

where the same effective viscosity and thermal diffusivity formulations are used as with the
three-dimensional equations, and the boundary conditions are:

ow oT oT

:——-:0; = ’TzT = (13)
us=o- (pv) = (pV)w w Or ay 3yl
aty=0
0 BW
u=-U,; — - ; T>Te asy—>oo 14)
T oz Jz

As in the 3-D case, the algebraic density formula (Equation 6b) can be used as an alternative
to solving the thermal energy equation.

Infinite Swept Wing Analysis

When the infinite swept wing analysis is requested, all X derivatives are set to zero, and the
three-dimensional equations then require initial conditions only at a single upstream station.
If, in addition, the attachment line analysis is requested at the initial station, no initial
conditions at all are required.

Displacement Thickness Calculation

After the solutions for the velocity and density profiles have converged at a given station
on the surface, an integrated form of the continuity equation is solved for the physical
displacement thickness §*:

) )
I [h3 {Pe Ug 8% - pe Qg 6% l]+ a_z[hl {PeWeB*-peQe5*3]] (15)

=h1h3 pwvw 3

11
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where

"1 = PelQe foo (peUe-pu) dy

0
1 00
6%3 = — [ (p Ve -pw) dy
peue JO A /

On the attachment line this equation reduces to:

F

63
P J=111h3pwvw (16)

3 (5 *)] We
Ix h3 | peUe (6% -6%1) |+ 1y PeanS -peUe

The detailed difference equations used in solving these equations are given in the Appendix.

TRANSFORMATION OF NORMAL COORDINATE

j 3 1 A1 to ig Farmad
To put the equaticns in the form used for computation, the y coordinate is transformed to
=5y
m

where §*,, the outer layer length scale defined previously in connection with the effective
viscosity formulation, is used as the normalizing length scale, whether the flow is laminar or
turbulent. This transformation counteracts the effects of boundary layer growth, keeping
the velocity profiles scaled advantageously in the computational grid at all stations on the
surface. For turbulent flow, it has proved to be sufficient to terminate the grid and to apply
the outer flow boundary conditions at n = 15. For laminar flow, a smaller value can be used.

NUMERICAL METHOD

The basic equations are non-linear and are solved iteratively by successive substitution, in
which the non-linear coefficients are evaluated from the previous iteration. The sequence of
calculations performed by this iterative procedure, in which the momentum equations and
the energy equations are solved alternately, is shown schematically in figure 3. Because of
the way in which the effective viscosity depends on the previous iterations, at least six iter-
ations are performed, even if convergence is indicated earlier. Convergence to within a small
tolerance in six iterations is not unusual, but if the solution is changing rapidly from one sta-
tion to the next, larger numbers of iterations, often as high as 20 to 30, are needed. Stations
near separation display the slowest convergence, but even then an iteration limit of 50 is
usually sufficient for practical calculations.

Convergence is recognized, and the procedure is stopped when 6*, and the velocity gradients

ou ow
8_ and 8_ at the surface cease to change by more than a specified percentage tolerance
Yy Yy

from one iteration to the next.



The x and z momentum equations are treated as equations for the velocity components u and
w, respectively, which are expressed in terms of velocity defect variables:

o= -2
PeQe
pW

g’ = 1_
peQe

where primes denote differentiation with respect to n. The continuity equation is used to
express the (pv) terms in the momentum equations in terms of f, f’, g, and g’. The continu-
ity equation is thus eliminated and the momentum equations form a set of two third order
equations for f and g. Since f and g appear only in nonlinear terms involving first or higher
order n derivatives, the linearized equations solved at each iteration are treated as second order
equations for f " and g'.

The energy equation is treated as an equation for the density ratio, or, since the pressure is
assumed constant through the layer, the temperature ratio

gofe_ T

p Te
The numerical method used to solve the linearized momentum and energy equations is
implicit, with the equations in effect being written only at the grid points on the unknown
column normal to the surface. The z derivatives are represented by three-point, second order
upwind difference formulas which take into account unequal intervals in z and which make
use of known solutions at (i, k - 1) and (i, k - 2) and the unknown column at (i, k) as shown
in figure 4(a). When the x component of velocity, u, is positive, the x derivatives are repre-
sented by the same type of 3-point upwind difference formula in terms of known solutions
at (i- 1, k) and (i - 2, k) and the unknown column at (i, k). For positive u (w is always
positive) the difference scheme is unconditionally stable. When u is negative, a 2-point, first
order difference formula in terms of values on the previous spanwise line (k - 1) is used for

the x derivatives, as shown in figure 4(b). Note that the sign of u is evaluated locally at
each point in the layer, and that the different x difference formulas for positive and negative

u can appear at different points along the same vertical column. In terms of its freatment of
the x derivatives for negative u, this scheme is equivalent to one proposed by Dwyer (ref. 8),
and by analogy with Dwyer’s stability analysis, the Courant-Friedrichs-Levy condition appli-
cable for negative u is assumed to be given by equation (2).

The above combination of x and z difference formulas is believed to be consistent with the
concept of zones of dependence and influence in three-dimensional boundary layers (ref.
9), and accurate results have been obtained for test cases (described below) containing both
positive and negative u. The detailed difference equations are given in the Appendix.

The change from second order to first order accuracy in the x derivatives whenever u becomes
negative does not often cause a serious deterioration in the accuracy of the results. For prac-
tical wing calculations, it is of little consequence, since negative u seldom appears in the type
of grid shown in figure 2. However, early in the development of the program, an attempt

13
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was made to extend the accuracy to second order for negative u by using difference formulas
equivalent to evaluating 3-point formulas for the x derivatives at (i, k - 1) and (i, k - 2)

and extrapolating the values of those derivatives to the unknown column (i, k). This scheme
displayed good accuracy for small negative values of u, but it became unstable long before the
assumed Courant-Friedrichs-Levy condition (Equation 2) was violated. This proved to be

an unacceptable limitation in the calculation of flows such as the duct flow experiment of
Vermeulen (ref. 15), discussed later, and the second order x differences for negative u have
since been discarded in favor of the first order.

For special situations in the grid, the program uses alternatives to the x and z difference for-

mulas described above. When proximity to a boundary makes a third point unavailable for
either the 3-point x difference for positive u (figure 4a) or the 3-point z difference, the
program uses 2-point, first order differences. When u is positive, and the solution is not
available at (i - 1, k) (e.g., if an illegal velocity was encountered there), the x difference is
taken at the last spanwise line on which solutions at i - 1 and i are available, provided the
condition

u by Ax- a7
w h3zAz-

is satisfied, where the difference interval Az~ goes back to the spanwise line actually used.
Figure 4(c) shows this difference schematically for the case where the next spanwise line
back (k - 1) is used. If none of the available difference meshes can be used legally, solution
is forbidden, and the program proceeds to the next station.

The result of replacing the x and z derivatives by finite difference can be written for the mo-
mentum equations:

pV¢1 [pe N ! )
Pl —(l-f)] + AL f +Byf +Cy = 0 (18)
{PeQe5*m 0 } X X X
pve3 [Pe ] } o p
— = (1-g) + A"+ B, f"+C, =0 (19)
{PeQeﬁ*m P) Z Z Z
and for the energy equation:
Y /
_<_£E> Qe v [_v ¢ 4 +Aed +Bod+Cq = 0 (20)
Peo Qo v-1 Qed*y d ’

where the coefficients A, B, C in the momentum equations depend on the solution at the
previous iteration, and the coefficients in the energy equations depend on d, f, and g at the
previous iteration and ' and g’ from the present iteration.



The 7 derivatives (primes) of f' and g’ and d at an i mesh point j are represented by difference
expressions of the following forms:
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The result of writing these expressions at all the n mesh points along the unknown column
except at the inner and outer boundaries is a set of linear algebraic equations. These equa-
tions, given in detail in the Appendix, combined with the known inner and outer boundary
conditions on f’, g, and d,are solved by tridiagonal matrix inversion.

In order to resolve velocity profiles near the surface accurately in turbulent flow, while at
the same time using an economical number of grid points, it is necessary to vary the grid
spacing, using small spacings near the surface and larger spacings farther out. To minimize
the effects of unequal intervals, a grid is used in which adjacent intervals are related by a
constant ratio:

K =21
Anj + 1

The initial interval Anq is dictated by requirements of resolving the inner part of the layer,
and in turbulent flow, the higher the Reynolds number, the smaller it must be. For Reynolds
numbers typical of full scale wings, An should usually be less than .001 and small values of
K (near 1) thus require large numbers of grid points. Large values of K, on the other hand,
can degrade the numerical solution through the loss of second order accuracy associated

with unequal intervals. Thus, for this source of numerical error, just as with any other trun-
cation error, there is a trade-off between economy and accuracy. Figure 5 shows results for

a very high Reynolds number flat plate flow, calculated in several different grids with different
numbers of points. The calculations all started with the same initial conditions at x = 0, and
the results are compared at the final station at x = 3.05 m. The results with 256 points and
with 100 points are nearly identical, indicating that these represent essentially converged
solutions. Even with only 25 points in the layer and K = 1.5, the results are accurate enough
for most engineering purposes. A good compromise for this flow and for most practical,
full-scale wing calculations is to use about 40 points and K = 1.25.
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To test the behavior of the numerical method for various flow angles with respect to the com-
putational grid, especially for negative spanwise velocity u, test cases were constructed from

a two-dimensional flow for which a two-dimensional solution had been obtained previously.
For these comparisons, the spillway flow measured by Bauer (ref. 10) was used. A
comparison of the two-dimensional soiution and the experimentai resuits is shown in figure

6, and agreement is seen to be good. The three-dimensional program was used to solve this
flow in several different slanted coordinated systems (figure 7) in which the flow appeared
three-dimensional, that is in which all velocity components and their derivatives along the

two coordinate directions parallel to the surface were non-zero. The known
two-dimensional solution from figure 6 was used to provide initial conditions along the up-
stream boundaries of these calculation regions, and the three-dimensional results were com-
pared with the two-dimensional selution at the downstream boundaries. Differences observed
were due entirely to the numerical method, since the same turbulence model was used to
calculate both the two-dimensional and three-dimensional solutions. When the direction of
marching resulted in a positive “spanwise’ velocity u, the differences in §* and Cg were less
than 1/2%, as shown in figure 7(a). Marching in the other direction, with negative u, the
differences depended on the slope angle of the grid, as shown in figure 7(b). Relatively

small values of negative u (8 = 30°) resulted in differences of less than 1%, while at larger
values (§ = 43°) approaching, the Courant-Friedrichs-Levy condition (8 = 45°), the difference

is increased to almost 2%.

The flow represented by the above test cases is, of course, undirectional, in that the sign of u
is the same at every point in the layer. In some cases it is important to be able to predict
flows in which u changes sign within the layer, but it is more difficult to construct defini-
tive numerical test cases containing such “cross-over’ velocity profiles. Only one flow has
been calculated containing an extensive region of cross-over profiles (Vermeulen’s curved
duct flow, to be discussed in the next subsection), and indications are that the present
method yields accurate results in such cases, provided the Courant-Friedrichs-Levy condition
is met in regions of negative u.

Since an important application of the present program is the prediction of separation, it

is important to understand the behavior of the maching-numerical scheme in the neighbor-
hood of a three-dimensional separation line. The program logic is set up to forbid further
calculation on any vertical column where it encounters velocity components which violate
either condition (1) or (2). When solution is forbidden along one cclumn, it is also forbidden
along any neighboring columns whose difference formulas must reference the forbidden
column. Which neighboring columns will be affected, of course, depends on which difference
formulas are applicable, which in turn depends on the velocity field. Thus, a forbidden zone
can propagate in the solution region in a way which depends on the velocity field in the
emerging solution and on the alignment and spacings of the computational grid. Whether the
boundary of such a forbidden zone approximates the location of a separation line in the flow
field, thus providing a prediction of separation, depends strongly on the particular choice of
computational grid. An examination of the mechanics of the propagation of a forbidden
zone into the grid indicates that the present method, and other marching methods like it,

can predict the location of a separation line only when the grid is chosen in such a way that
one or the other of the coordinate line families lies at least roughly parallel to the separation
line to be predicted.



An illustration of the above idea is provided by a hypothetical test case, Case A4, used at the
recent “Trondheim Trials” (ref. 11) of three-dimensional boundary layer methods.

The task in Case A4 was to compute the turbulent boundary layer on a flat plate with a circu-
lar cylinder of radius a protruding perpendicular to the plate. As initial conditions, flat

plate turbulent boundary layer profiles with 8/a = .01 were specified along a cross-surface

4 radii upstream of the cylinder axis, and as a boundary condition, the two-dimensional,
incompressible potential flow about an infinite circular cylinder was specified. In a region
extending laterally 3 radii from the plane of symmetry, the participants at the trials were
asked to compute the flow from the initial plane as far downstream as possible. All of the
participants chose to compute the flow in Cartesian coordinates, and as a result, the
boundary of the forbidden zone propagated laterally from the saddle point of separation on
the plane of symmetry, as shown by the straight boundary in figure 3.7. This forbidden
zone boundary approximates the separation line only in the immmediate neighborhood of
the saddle point. In the experimental flow of East and Hoxey (ref. 12) which involved

the same geometry but had a thicker initial boundary layer, the separation line was nearly
circular from 0°to 90° A more advantageous coordinate system for calculating the flow in
the neighborhood of such a separation line is a polar coordinate system centered on the
cylinder axis. When the present method was applied in polar coordinates, the resulting for-
bidden zone boundary was the curved one shown in figure 8, with a nearly circular segment
from 0° to 90°. Along this segment of the boundary, the predicted radial component of the
skin friction was very small, indicating that a separation line in the predicted flow field had
been approached very closely.
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V. COMPARISONS WITH BOUNDARY LAYER EXPERIMENTS

TWO-DIMENSIONAL FLOWS

It should be regarded as a necessary but not sufficient condition in the validation of any
three-dimensional method, that whenever the method is used to predict two-dimensional flows,
the results should be the same as for an equivalent two-dimensional method containing the
same turbulence model. The present method can be used to calculate two-dimensional flows
in either of two ways: The program can be run in the infinite swept wing mode with zero

sweep, or the attachment line module can be used with %E 0. Both of these modes of
operation have been used to calculate a wide variety of thelnominally two-dimensional
flows used as test cases at the 1968 Stanford Conference (ref. 10) on turbulent boun-

dary layer computation. In all cases, the degree of agreement with experiment was substan-
tially the same as that displayed at the conference by programs based on effective viscosity

models similar to the one used in the present analysis.

In an experiment by Cumpsty and Head (ref. 5), measurements were made in the
attachment line boundary layer on the leading edge of a swept strut in a wind tunnel. The
boundary layer was thin enough, and the spanwise variations in all flow quantities were miid
enough that infinite span wing conditions were effectively simulated on the attachment line.
A range of values of the attachment line parameter C* was produced by setting the strut at
various sweep angles. At low values of C* the attachment line boundary layer was laminar,
and at higher values it was turbulent. The attachment line module of the present program,
running in the infinite swept wing mode, was used to compute the flow in the turbulent
cases. Agreement between the predicted and measured velocity profiles was quite good,

the predicted profiles being essentially the same as those predicted by Cebeci (ref. 13)

using a turbulence model similar to the present one.

INFINITE SWEPT WING EXPERIMENT OF
VAN DEN BERG AND ELSENAAR

For this carefully executed set of measurements (ref. 14), infinite swept wing condi-

tions were closely approximated on a swept flat plate, with a chord-wise pressure gradient
being imposed on the plate by a swept wing-like body suspended nearby. The measure-
ments covered the rear portion of the plate, which sustained an adverse pressure gradient
similar to what generally occurs on the rearward upper surface of a lifting swept wing. The
deceleration of the chordwise component of the outer flow velocity is shown by the decrease
in streamline angle relative to the leading edge (bottom half of figure 9). Within the layer,
the streamline angles change more rapidly than they do in the outer flow, and when the
minimum angle occurring in the layer reaches zero, a swept separation line is indicated. Note
that the magnitude of the skin friction need not go to zero at the separation line. The experi-
mental flow is seen in figure 9 to separate in this way, and the location of separation is pre-
dicted reasonably well by the calculations using the simple non-isotropic effective viscosity
model, while no separation is predicted by the conventional isotropic model.



Well upstream of separation, at x = 1020 mm, the non-isotropic model provides good pre-
dictions of the velocity and direction profiles through the layer, as shown in figure 10. The
predicted direction profiles exhibit a peak near the surface (corresponding to the minimum
B of figure 9}, whose existence seems to be confirmed by the experimental profile,

though the experimental resolution does not show the detailed shape of the peak. Direction
profiles predicted by the isotropic model do not exhibit a peak and do not agree as well with
the data. Closer to separation, at x = 1220 mm, neither model predicts the profiles particu-
larly well. This deterioration of the predictions near separation, however, cannot be attri-
buted solely to the skewing of the velocity profiles in three-dimensional flows. In the nomi-
nally two-dimensional, planar flows studied in the past (see ref. 10), the predictions of sim-
ple effective viscosity models displayed the same sort of deterioration near separation.

CURVED DUCT EXPERIMENT OF VERMEULEN

In this experiment (ref. 15) extensive t
on the flat ceiling of a rectangular duct with a 60° bend The locations of boundary layer
measuring stations are shown in figure 11, along with patterns of external flow and limiting
surface streamlines deduced from the measurements. The pressure along the center of the
duct (streamwise row C of measuring stations) was roughly constant, but a strong radial pres-
sure gradient resulted in large cross-flow angles in the boundary layer, as can be seen in the

limiting surface streamline pattem.

mean velocit v measurements were carried out
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The flow has been computed by the present method using a computational grid aligned with
the rows of measuring stations as shown in figure 12. Initial conditions from the experimental
data were applied along the upstream boundary, row 1, and along the outer side boundary,
row A. Since the coordinate system is rectangular between rows 1 and 4 and polar between
rows 4 and 16, the curvature of the system is discontinuous at row 4. The soiution region was
therefore divided at row 4, and the solution was obtained in two steps. First, the solution
was obtained for the straight section between rows 1 and 4, and the resulting velocity profiles
along row 4 were saved. These profiles were then used as initial conditions for the solution

in the curved section from row 4 to 16. Along the inner side boundary, row E, the radial
velocity in the outer part of the layer is outward from row 8 onwards, and as a result, a
forbidden zone propagated into the grid from that point and occupied just over half

the width of the flow by row 16. Because of this, no attempt was made to continue the
calculations for rows 17 through 19. It is possible that an even finer radial grid spacing bet-
ween rows C and E would reduce the extent of the forbidden zone, but other grids have not
yet been tried.

Calculations were made with both the conventional isotropic effective viscosity and the simple
non-isotropic model described in Section III. Experimental effective viscosity profiles plotted
by Vermeulen had shown a reduced cross-flow effective viscosity related to the streamwise
effective viscosity by a roughly constant ratio of about 0.4 (these data, in fact, were the rea-
son the simple non-isotropic model was programmed in the present method). It was, there-
fore, expected that the non-isotropic model would result in better predictions than the iso-
tropic one. The differences between the predictions turned out to be small, however, and if
anything, the isotropic model shows slightly better agreement with the experiment. The
predicted limiting surface streamline directions in figure 11 show generally good agreement,
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as do the predicted boundary layer quantities along row C, shown in figure 13. For the
velocity and direction profiles at station C-14, shown in figure 14, the predictions of the
isotropic model show somewhat better agreement with the data then do the predictions of
the non-isotropic model. Again, as in the van den Berg and Elsenaar experiment, the non-
isotropic model predicts a peak in the direction profile near the surface, but in this case,
there appears to be no evidence for it in the data. Thus, in contrast with the results for the
van den Berg and Elsenaar test case, the isotropic viscosity model provides better agreement
with the experiment data in this case.

SWEPT WING EXPERIMENT OF BREBNER AND WYATT

In this experiment (ref. 16), velocity magnitude and direction measurements were

made in the boundary layer of a 45° swept wing of constant chord and AR =5 at several
angles of attack. The upper portion of figure 15 shows the locations on the planform of the
profile measurement stations. The potential flow at several angles of attack was analyzed
using one of Boeing’s panel-type influence coefficient potential flow methods. The boundary
layer grid generation program (described in Section V) and the boundary layer program were
run for the highest angle of attack for which boundary layer profiles were measured, o = 6.3,
and the computed results were found to be in generally good agreement with experiment.

Velocity profile comparisons are shown for inboard and outboard stations at 80% chord in
figure 16. The small disagreement at the outer edge of the layer represents the discrepency
between the potential flow analysis and the measured outer flow. (Note that velocity magni-
tudes are normalized by the far-field value and thus, do not go to 1.0.) Within the layer, agree-
ment is good, considering the limitations of the eddy viscosity model at such low Reynolds
numbers and the fact that the location of the transition front was not reported precisely for
the experiment and had to be assumed for the analysis. The small reversal in the slope of the
direction profiles very near the surface is a result of the simple non-isotropic eddy viscosity
model, which is discussed in connection with the calculations presented earlier in this section
for the infinite swept wing (van der Berg and Elsenaar) and the curved duct (Vermeulen).
Comparisons with the data nearer the trailing edge (x/c=0.99) were not possible because the
analysis predicted separation at about 96% chord (slightly sooner outboard; slightly later
inboard). If viscous-inviscid interaction were taken into account in the analysis, the predicted
separation would move aft or possibly not occur at all. The predicted displacement effect
cannot be compared directly with the experiment because the experimental data were too
sparse to allow integration for the experimental three-dimensional displacement thickness.



VI. INTERFACE PROGRAMS

In the viscous-inviscid interaction procedure, the communication of data between the inviscid
analysis program (FLO 27) and the boundary layer program depends on two basic interface
programs (see figure 1). The first interface, described in detail below, transforms and inter-
polates the inviscid outer flow velocity vectors as required for input to the boundary layer
program and, in the process, generates the curvilinear, orthogonal coordinate grid used in

the boundary layer analysis. The second interface interpolates the displacement thickness
calculated by the boundary layer program back to the potential flow geometry input data
points and is also described in detail below.

WING BOUNDARY LAYER GRID GENERATOR

The function of this interface program is to convert potential flow velocity component and
wing geometry data from FLO 27 ( figure 17) into a form usable by the boundary layer
program and to generate the curvilinear, orthogonal boundary layer grid (figure 18). The
program requires that the wing geometry (xp, Yps Zp) and potential flow velocity (Vy, Vy,
V) data be provided at data points arranged along rows or rib cuts roughly aligned in the
flight direction as shown in figure 17 (data points on a rib cut need not be at strictly con-
stant yp). To allow for a correct analysis of the leading edge boundary layer in the boundary
layer program, the boundary layer coordinate system is constructed such that the spanwise
coordinate line that divides the wing surface into upper and lower surfaces for purposes of
the boundary layer analysis coincides with the attachment streamline of the potential flow
solution. This is accomplished by an iterative procedure in which estimated locations of the
intersections of the attachment line with the rib cuts are refined repeatedly. At each iteration,
the directions that spanwise coordinate lines in the boundary layer grid would assume if they
were to pass through potential flow data points are calculated, using the same quintic curve
fitting routines that are used later in the construction of the final boundary layer grid. These
spanwise coordinate line directions are then used to convert the potential flow velocity com-
ponents Vy, Vy, V, at each potential flow data point into a velocity component Wp perpen-
dicular to the spanwise lines and a component Up parallel to the spanwise lines. These com-
ponents are analogous to the velocity components W, and U, being sought for the final
boundary layer system. By interpolation, the location is found on each potential flow rib
cut where W, = 0, and this becomes the assumed location of the attachment line for the
next iteration.

The new attachment line intersections result in new spanwise coordinate line directions

which in turn, result in new velocity components Wp and Up, and so on. Usually, after

about five iterations, the procedure converges to within a very close tolerance such that

Wp = 0 (interpolated) at the assumed attachment line location. This is a convergence criterion
that could, in principle, be satisfied by any streamline on the surface, as the velocity component
perpendicular to any streamline is zero. The fact that the procedure converges to the attach-
ment line in particular results from the special nature of the attachment line as an assymptote
for all streamlines emanating from the leading edge region. The procedure can be satisfied
only if it identifies a single streamline that intersects all of the potential flow rib cuts, and
only streamlines in extremely close proximity to the attachment streamline can satisfy this
requirement. In practice, the convergence is sufficiently strong that an initial placement of
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the assumed attachment line on the bisector of the rib cut arc length from the upper surface
trailing edge to the lower surface trailing edge is sufficient to start the procedure.

After convergence of the attachment line location, the velocity components Wp and U
(known now for the potential flow data points) are interpolated chordwise along the potential
flow rib cuts to the locations where spanwise coordinate lines of the final boundary layer grid
will intersect the rib cuts. These intersections form an intermediate potential flow-boundary
layer grid (or PB grid, as shown in figure 19), and the interpolated velocity components aré
referred to as Wpp and Upp.

The components Wp and Up are much better suited to chordwise interpolation than are the
original potential flow components (Vy, Vy, Vz) which have large second derivatives around
the leading edge. All chordwise interpolations of velocities and geometry coordinates are
accomplished using a second order interpolation scheme in which the two adjacent known
points are matched exactly, and two additional known points are matched in a least squares
sense.

The chordwise boundary layer coordinate lines are then constructed step by step as straight
line segments that intersect adjacent spanwise coordinate lines in such a way as to form equal

orthogonal grid as shown in figure 2. During this process of geometric construction of the
grid, the spanwise coordinate line segments between PB grid points are treated as fully three-
dimensional curves in space and are represented by explicit quintics Xp (yp) and Zp (yp), with
the spanwise Cartesian coordinate Yp (figure 17) as independent variable. The quintic curve-
fitting routines used for this purpose produce a curve fit with continuous second derivatives
across the defining data points (PB grid points), thus ensuring continuity of the curvature
coefficient K13. The quintic curve-fitting algorithm was also designed to keep curvature

as small as possible in regions where the defining data favor small curvature. Wings consisting
of straight tapered segments with nearly straight spanwise generators, connected to adjacent
segments of localized spanwise curvature, are particularly well represented by the quintic
spanwise curves, whose curvature remains localized in a manner consistent with the defining
data. This is illustrated in figure 21, which shows the curvature of a typical spanwise coor-
dinate line on the NASA F8 wing.

The metric coefficients h| and h3 and the curvature coefficients K13 and K3 are derived from
the geometry of the final boundary layer grid. Second order finite difference formulas are used
to compute hy and h3 as derivatives of arc length £ and ¢, along the x and z coordinate direc-
tions, respectively:

of
hy = =%
0x
of
hy = =%
3 0z

The curvature coefficient K 3, the surface-normal component of the curvature of the span-
wise coordinate lines, is computed directly from the coefficients of the quintic spanwise
curves. The chordwise curvature K31 is computed by first order finite differences as the
chordwise derivative of the slope, in the local surface tangent plane, of the spanwise coor-
dinate lines, also determined from the coefficients of the quintics.



The final potential flow velocity components Wg, U in the boundary layer system are computed
in several steps. First, the components Wpg, Upp, at the PB grid points are converted back

to Cartesian components Vy, Vy, V,, analogous to the original potential flow data velocity
components. These Cartesian components are then interpolated spanwise from the PB

grid points to the final boundary layer grid points, using the quintic curve-fitting routines

for interpolation, with yy, as the independent variable. The Cartesian components, known

now at the final boundary layer grid points, are then converted to a component W per-
pendicular to the spanwise coordinate line and a component Uy parallel to the spanwise
coordinate line, using the quintic coefficients to determine the coordinate line directions.

DISPLACEMENT THICKNESS INTERPOLATOR

To interpolate the displacement thickness 6* from the boundary layer grid back to the poten-
tial flow input geometry data points, this interface program requires three basic bodies of
data:

1. A boundary layer solution file containing boundary layer solution quantities, including
6%, at boundary layer grid points.

2. A boundary layer grid geometry file containing the Cartesian coordinates of all surface
points in the boundary layer grids, both upper and lower surface.

3. A potential flow input geometry file containing Cartesian coordinates of the wing geo-
metry defining data points.

Before the interpolation can begin, §* must be known at all points in the boundary layer
grid. If flow separation was predicted by the boundary layer program on either the upper

or lower surface, the §* data (in 1., above) will be incomplete and must be augmented. This
is done by extrapolation along chordwise boundary layer coordinate lines from the last valid
5* data value on each line. The user has the choice of linear or constant-value extrapolation.
The linear extrapolation option is usually the appropriate choice, but in some special cases,
such as lower surface separation in the cove region of an aft-loaded airfoil (see F8 wing cal-
culations, Section VII) constant-value extrapolation is preferable. The required output is §*
corresponding to each of the geometry input points in 3., above. For each of these points
the program uses an iterative search and interpolation algorithm to determine a pair of coor-
dinates x, z in the curvilinear, orthogonal boundary layer coordinate system corresponding

to the Cartesian coordinates of the point in question (and thus, at the same time, determining
whether the point is on the upper or lower surface). A standard two-dimensional interpolation
algorithm is then used to determine & * at the potential flow data point, using the boundary
layer coordinates x, z as independent variables.
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VII. VISCOUS-INVISCID INTERACTION RESULTS

WING GEOMETRY AND FLOW CONDITION

To illustrate the capabilities of the viscous-inviscid interaction system, calculations were
carried out for the NASA F8 research wing at Moo = 0.8 and @ = 2°. The planform and
defining section locations used are shown in figure 22. Because the planform leading and
trailing edges display substantial curvature, this wing constitutes a more demanding test
of the grid generation and boundary layer solution numerics than would a more typical
transport wing design. Although this example is not at all typical of current LFC wing
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The wing geometry used here is the same one for which Nash and Scruggs (ref. 17)

have previously calculated the three-dimensional boundary layer development. Direct
comparisons with their results, however, are not possible because experimental pressure
distributions rather than inviscid flow calculations were used in their calculations, and our
calculations were made for different, off-design, flow conditions.

The choice of off-design flow conditions was imposed primarily by limitations inherent in

the inviscid flow program (FLO 27). Possibly as a result of the large sweep angle of the inboard
leading edge glove, FLO 27 could not be made to converge at the design Mach number of 0.98.
A lower Mach number of 0.80 was therefore chosen, where it was possible to achieve a con-
verged solution. However, as would be expected at a Mach number below the design point,

a low angle of attack of 2° had to be chosen in order to avoid a strong leading edge suction
peak. Ata =4.68°, for example, local peak Mach numbers above 1.8 were present, and

the strength of the resulting shock clearly violated the assumptions inherent in the use of the
transonic potential equation.

GENERAL DESCRIPTION OF THE CALCULATIONS

The calculations were carried out for five complete cycles without suction and four complete
cycles with suction, in the general iterative sequence illustrated in figure 1, with numbers of in-
ternal inviscid sweeps in FLO 27 and 6 * under-relaxation factors as shown in table 1. In both
cases, a reasonable convergence of the 6 * distribution was achieved. Except for slight move-
ments of the attachment line location with changes in the outer inviscid flow as the system
converged, the upper and lower surface boundary layer grids remained nearly the same for

all of the boundary layer calculations and are shown in plan view in figure 23. In all cases,
the flow was assumed to be laminar ahead of the arbitrarily imposed transition lines shown

in figure 23. In lieu of suitable initial conditions along the wing root boundary, the infinite
swept wing option in the boundary layer program was used to start the calculations. In the
case with suction, the suction distribution was:

Aw =-5. for0<x/c<.5 Vi /Poo QooC
where Ay = — \|[—————
Aw =-2.5for .5 <x/c<1.0 Qoo Moo




The convergence of the interaction in the case without suction is illustrated in figure 24,
which shows the § * distribution, as predicted by each of the five boundary layer calcula-
tions, along one chordwise lower surface boundary layer coordinate line near mid-semi-
span. A more global view of the convergence behavior can be seen in figure 25, where the
maximum corrections to § ¥, made by the displacement thickness interpolator program
(Section VI) for each potential flow geometry defining section, have been plotted against
defining section number, from root to tip (figure 22 shows the locations of these sections
in plan view). From figure 24, it is clear that there was some oscillation in the convergence
of 6*, and it appears that convergence would probably have been faster with a lower under-
relaxation factor, say 0.5. In view of these results, a factor of 0.5 was used after the second
iteration in the case with suction, but in that case the boundary layer was much thinner, the
interaction was weaker, and a fair comparison cannot be made.

Table 1.—Inviscid Relaxation Sweeps and
8 * Under-Relaxation Factors

FLO 27 relaxation sweeps 6
— Under-
Iteration Coarse Medium Fine relaxation
number mesh mesh mesh factor
1 100 100 10 0.8
] 2 100 100 10 0.8
‘;YJ';EZ:‘ 3 0 0 20 0.8
4 0 0 30 0.8
5 _l 0 0 40 —
1 100 100 10 0.8
With 2 100 100 20 0.5
suction 3 0 0 30 0.5
4 0 0 40 -

In the case without suction the optional algebraic (constant total enthalpy) formulas for
density through the boundary layer were used rather than solving the thermal energy equation.
To demonstrate that the viscous-inviscid interaction results would not have been significantly
different if the energy equation had been used, the upper surface boundary layer for the

final (fifth) iteration was re-calculated using the energy equation. Figure 26 compares the

6* distributions predicted by the two calculations, and it can be seen that the types of den-
sity calculation used had very little effect on §* in this case. In flows where the viscous-
inviscid interaction is primarily the result of a turbulent boundary layer, and the surface is
adiabatic, the algebraic density formula is a good approximation and can be expected to

give results nearly identical to the full energy equation at some saving in computing time.

For laminar flow, however, the effective Prandtl number is farther from unity, and, in

cases where it is important to predict the details of a laminar boundary layer, the energy equa-
tion should be used.
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DISCUSSION OF RESULTS

The calculated pressure distributions display the usual features associated with modern, aft-
loaded, transonic airfoil sections when operated below the design Mach number and at a
low lift coefficient. As can be seen in figure 27, which shows the Cp distribution just out-
board of mid-semi-span, the aft lower surface displays a pressure maximum at about 90%
chord as a result of the substantial aft camber, and, even at this low lift coefficient, there is
a pronounced upper surface suction peak near the leading edge corresponding to a small
region of supersonic flow. The curve labelled “inviscid” in figure 27 was calculated for the
bare wing shape (40 fine mesh inviscid sweeps in FLO 27 beyond the original 10 sweeps
shown for iteration 1 in table 1), and in comparison with the other curves, it shows clearly

the effects of viscous-inviscid interaction. In the case without suction, the boundary layer
displacement effect produced considerable reductions in lift and pitching moment. In the

al il L ULIDUL PIVUULOU LUIISIULIAUIT VLWL RIVILS il 1010 Qi plalliail A VLI, 240

case with suction, the effects are in the same direction but are much weaker.

The final, converged pressure distributions and details of the corresponding boundary layer
solutions for the upper and lower surfaces, both with and without suction, are shown in
figures 28 through 31. For each surface and flow condition, the outer inviscid solution is
depicted at its inner boundary (i.e., at the displacement surface) in terms of constant Cp con-
tours and corresponding inviscid flow streamline patterns (these two plots constituting part a
in each figure). The corresponding boundary layer solutions are depicted in terms of surface
shear stress directions, contours of constant displacement thickness 6 *, and contours of
constant §*¢ (these three plots constituting part b of each figure). The surface shear stress
direction field in part b of each figure is shown in the form of surface streamlines, i.e.,
curves constructed to be parallel everywhere to the surface shear stress direction. These sur-
face streamlines are the computational equivalent of experimental surface oil flow patterns.
Because 6* in three-dimensional flows is such a volatile quantity, responding strongly to
convergent or divergent cross-flow patterns, and even taking on negative values, it does not
provide the familiar indication of local boundary layer thickness that it does in two-
dimensional flows. For this reason, the integral thickness 8* is included to give an indica-
tion of the thickness of the local streamwise velocity profiles.

On the outboard wing, the isobars become nearly parallel to constant percent chord lines,
and in the case without suction, qualitively at least, the boundary layer development follows
a pattern that would occur on an infinite swept wing subjected to the same pressure distri-
bution. In regions of strong adverse pressure gradient, § * increases rapidly, and the surface
streamlines turn outboard. On the upper surface, the most rapid growth in §* occurs over
the last 10% of the chord, while on the lower surface, §* grows rapidly only over the forward
portion of the cove. Aft of 90% chord on the lower surface, the pressure gradient is strongly
favorable, such that 6 * decreases, and the surface streamlines turn back inboard. As is typical
of three-dimensional boundary layers with pressure-driven cross flows, streamline curvature
near the surface is much stronger than tlie corresponding curvature of the outer inviscid flow

streamlines. In the case with suction, the suction is strong enough that large areas of negative
&* appear.

On the aft inboard portion of both surfaces, with and without suction, an intricate, highly
three-dimensional flow pattern develops. In response to the unsweeping of the isobars in-
board near the plane of symmetry, the flow near the surface diverges strongly, carrying fluid




away laterally and leaving a region of negative §*, This divergence effect can be seen in the
surface streamline plots for both the upper and lower surfaces and is sufficiently strong to
produce the decrease in §* in spite of adverse streamwise pressure gradients. The local inte-
gral thickness 6 *g, however, continues to increase in the streamwise direction. Just outboard
of this region, the laterally displaced fluid accumulates in a region of converging flow, pro-
ducing large positive values of 8 * but only modestly increased values of §*4. It is to be expec-
ted, of course, that the flow pattern described above is influenced to some extent by the
assumed initial conditions along the wing root boundary (the numerical zone of influence of
the wing root boundary is somewhat larger than the more strict zone of influence derived
from the differential equations). And it should be remembered that these initial conditions
were generated, for the sake of convenience, by the infinite swept wing equations, which do
not represent a realistic model of the wing root flow. The quantitative details of the predicted
flow pattern immediately adjacent to the boundary are therefore suspect, but experience has
shown that the basic qualitative pattern tends to occur, regardless of the wing root initial condi-
tions. Figure 32 shows §* contours predicted for a transport type wing using two widely
different assumptions for wing root initial conditions (the calculations are described in more
detail in ref. 6). The contour patterns for both calculations are qualitatively very similar. Pre-
dicted 8* contour patterns such as these will be difficult to compare with experiment, however,
because directly measurable quantities (local velocity profiles) do not show the strong spatial
variations displayed by 6*, and 6 * itself would be extremely difficult to derive accurately
from experimental measurements. In most cases, however, the region in question does not
constitute a large portion of the wing, and flow field details predicted there have relatively
little influence on the flow field prediction for the wing as a whole.

An interesting feature of the present test case is that a massive lower surface separation on the
outboard wing was predicted when the boundary layer was calculated for the inviscid pressure
distribution calculated for the bare wing shape. The resulting surface streamline pattern,
shown in figure 33, contrasts sharply with the corresponding pattern in figure 29, where vis-
cous-inviscid interaction has reduced the pressure gradient, and no separation occurs.
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APPENDIX A: DETAILED DIFFERENCE EQUATIONS
IN THE BOUNDARY LAYER PROGRAM

This appendix lists the detailed finite difference equations used in solving the following par-
tial differential equations:

1.  3-D momentum and continuity equations
Attachment line momentum and continuity equations
3-D thermal energy equation

Attachment line thermal energy equation

3-D §* equation

AN

Attachment line 6* equation
1. 3-D MOMENTUM AND CONTINUITY EQUATIONS

These non-linear eauations are linearized by successive substitution, and the resulting linear
equations are solved in subroutine SOLVEL. The x and z momentum equations are,
respectively:

p — p -
h_l uuy + ha wu, + (pv) uy + pqu13 —pW2K31 + ﬁ—(pvefluy) y—O

3
OO ® O ® ©

P P = 2 P _ =
n uw, + i3 ww, + (pv) wy + puwKszj -pu‘K;3 + i3 (PVef3WY) y=0

O O ® ©) ©) ©

where the terms are numbered for future reference in defining the individual coefficients.
The equations are treated as equations for f' and g’ respectively, where:

"o pu
£'=1-

PeQe
g =1 - pw »
° PeQe

and are then expressed in the following computational form:

*
e e
*
- p—m-Q 2(pvef1wy) y+AZ g1r+BZ g'+Cz =0 ,
e <t
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where the coefficients A, B, and C contain the results of expressing the x and z derivatives
as finite differences and are expanded below. Expressing the n derivatives (primes and y deri-
vatives) as finite differences results in a tridiagonal system of equations:

or

-‘Rﬂa [d(l-f’)]’} + Ay ' +By ' +Cy = 0

¢ ' ,I rH !
-{R—fj [d(1-g] }+Azg +B,g+C, =0

1
o

apj fe) + agjfj + a3jff) + agj =

bijg+1 + byjgj + b3jgl1+bgj =0

where the individual coefficients are:

blj

b2j

b3j

byj

azj

a4;

30

1

(9334 23 441, , ]

M+1 - Mj-1 L

-1

+ A
(M+1 — 1)) z

nj+1 = Mj-1

1

1l

(835+1 + 837), (¥3; + ¢3J-1)]d B,
(hi+1-m) (M- -1)

(@3 +¢3-0 41, ]
T~z

ni+1 - M-1 L (M - 1j-1)
_ -l [@3j+1+913j) oo J @3t tes) | (83830 |
= —— dj+] - —

Nj+1 = Mj-1 (77]+1 77]) ("?J+1 77J) ( - nj- 1)

(¢3j+¢3_] 1) d] ]+ c,

(M = Mj-1)

1

Nj+1 = Mj-1

-1

(@1j+1 * 1)) djvt ]
(1~ j) i

Mj+1 = Mj-1

1

(1541 +215) | (215 + 215 1)] di +B
_ ! X
(=) @)

Nj+1 — Nj-1

-1

(915 * 915-1) dj-1 ]
_AX

| (5 - nj-1)

nj+1 ~ -1

[(@15+1+915) , _J(Q15+1+815) | (815 1) 1)
| (Mj+1 —15) J (nj+1 ) (nj - mj-1)

(215 * 815-1) J_] ie,

("7] nj- 1)



and where

©-
—
©-
w

Qeb*m
and R = =57

e
1
wﬂl
[al
e
w
il
z?vl
[=N

The coefficients A, B, and C are sums of contributions from the terms in the differential
equations:

Ax = AxltAx2+Ay3

By = Bx1 *Bxxl + Bx2 ¥ Bxz2 +Bx3+Byq

Cx = Cx1 +Cxx1 +Cx2+Cypn +Cx3 +Cxq + Cxs5 +Cxe
Az = Azl YAzt A3

By = Bzl ¥ Bzx1 + Bz + Byzp + B33+ By

Cz = Cap+tCx1 +C0+CqpntCy3+Cq+Co5+C6 >
where the number appearing in each subscript designates the term responsible for the contri-

bution. The (pv) appearing in terms@ are replaced by the following expression, derived by
integrating the continuity equation:

@)= 5= |- 9*m[130:Qen = 0] ~130,08*my (1f' - D - 5y [h18.08-8)]

~h1pQb*m, (ng' - g) + hh3 ('p“v)w} .

The individual contributions are:

1 :
Axl =Ry dépm 1 (1-1)

1 . 8 — ,
Bal = dﬁ*mxn(2—f)—ﬁl—6m—e [4Qea - 1],

| TP
_Eida my 7

o g -,

Bxxlfl +Cxx1

Cx1

d L a3
Ax2 = g3 8*mm(1-g)f
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Ax3

Bzx18' +Cox1 =

Cz1=";

32

~ L g

[h I,C‘_eée(n—g)] .

h U*n] 7 (} - g,) fl
3 Z
6*

h3Qe

(1-g) [aQe (1 -1)]

h3 *m, 1 (1-g"

d | 6*m__ M 520 f).‘ ® f) 8%m
— = — 1 — R — —
h]h3i Pe Qe Lh3PeQe (n -Jx *th3 s my (760 + peQ

)

[h356Qe (- 0], +h38%, @ -£-n)

+ hyé* ' hih
1 mz(ng -g)- T

d’ o m
hih3 | 520
h1h3

*mr _~
720, [h]peQe (n—g)]Z +h16%m, (ng’—g)—e—Qe (p_v)w]
dl

f-5% 8% m
i {p o [h37eQe (n - 0] +nh3s* m, - = ‘Qe

[h1peQe (n- g)J —hy &%y (ng' - g)+ Q (pV)W}

= -§*nKi3d (1-g)

8*mKizd (1 -g")

-8*K31d (1 ~¢)2

8*m UeUe,
Ge 21 hj -

*mxn (1-1)

Weﬁez K1 2UeW. .2
Tl 13UeWe + K31 We

==

d’ ; y
7 O*myen (1)

5%,
th

(1= [aQe (1-g))

’

d
By Ome1(1-F)



A,y = %dc‘i*mzn(l ~g)

B.,~{= _.l.d'g* n_ 8¥m [d— ,]
2)7 5 $Tmm @-g) -1, 19Qe (-8,

Qe (1-21)],

Byz28 +Cyz2

1 ! g
Cyo = —h—3 d 5“‘mzn

Az3 = Ax3
— d, 6*m — ES 1

6*m
N —Q [hlpeQe(” g)] +hlc‘3*m (7' —¢-7)

hihj (ov)
PeQe PViw

_ i R
Cp3 = 111113[ 05 [h35eQe (1 0] ~h3 8% (nf = D)

5*m hih3
Q [hlpeQe (/z—g)] +thy 8%y g+@; (pv)w]

By4 = -86*mKzqd (1-1)

Cya = 8%pKzpd (1 -1

C,5 = - 8% mKq3d (1 -f)2
5*m | UeWe,

C6 = 53 [‘ - Welwez - K31 WelUe + K13 6e2}
Qe hi 13

Replacing the x and z derivatives by finite differences results in the following expressions,
depending on which adjacent points are used in differencing. Here i is the spanwise (x direc-
tion) index, and k is the z direction index, with i, k being the present station (unknown column).
In cases where one index or the other is deleted, it is assumed that that index is not being
incremented.
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IZDIFF = 1: k-1

ES — 8%
8% my ~ 8" my_y

x =
o My, Dzm

and similarly for [h} 5eQen-2)], , [4Qe(1-8"), , Ue,, and We, .

B dd* ,
BX22 = _hBDzm (1-g) .

C 5*m (1=’ [d(je]k - [dce(l‘f’)] k-1
xz2 h3Qe -2k Dym
dé*
B2 = “RgDomly
o . - %m [aQe]y - [dQe(1-8"] -1
zz2  ~ h3Qe « Dym
IZDIFF = 2: k-2
k-1
k
z
6*mz = (Rzmm - Rzm) 5*mk - Rzmm 5*mk_1 + Rzm 5*mk_2

and similarly for [hl ﬁeae(n—g)] 75 [dC_)e(l—g')] z> I_Jez , and We, .
& , _
[I?Q’n_el (1-g )] K [(Rzmm - Rzm)('dQe):I k

Cxz2 = [h_a:)’*_@_n:: (l_gl):lk l (Rzmm - Rzm) (dée)k

Rzmm [0Qe (1'-f9)y—1 + Rym [dQe(1-f)] k_z}

It

Bxz2

i

Bzz2 = }%n_e [(Rzmm'Rzm) (‘dée)k]



Czz2 = 1306 {(Rzmm - Rzm) [dQel x ~ Rzmm

[dQe(l‘g,ﬂ k-1 +Rzm [dée(l_gl)] k—2}

IXDIFF = 0: Infinite swept wing option

5*m, = Up = We = [dQe(1-1)] = [h35eQen-D], = 0

Byxl = Cxx1 = Bzx1 =Czx1 =0

IXDIFF = 1 o—®
————— — -1 i X

* _S®
5%m; ~ %"mj |

8*
My Dym

and similarly for [dQe(1-f")] x , [h36eQe(n-D] x , ﬁex and Wex .

- [, 52
xx1 = hléei Dymd;

[dQg]; - [dQe (1 - )5 - 1}

Dxm

5% -DQ
B = __m e €
zx 1 l:the (1 f)]'[—Dxm]i

1

8* 571 (16 (1-0].
Cxzl = [ & (l—f’)]. {[derl [4Qc(1 g)]l-l}
1

Cxx1

|
—
=
il
Ol
Pagi!
| I
S N—

h1Qe Dym
IXDIFF = 2: —o0——o0—®
i-2 i-1 i X
5*mx = (Rxmm - Rxm) a*mi - Rymm 5*mi_1 +Rxm 5*mi_2

and similarly for [dQe(1-f)] x, [h36cQe(n-N], , T, , and We, .

Byx1 = [%]1 {(Rxmm"Rxm) [—d(—le]i}
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6-{
va1 |— m-l ‘[ """!m - vm\ rde] Rvmm
AAL Ln Qe-l l Fav ¥}
(6060169 1+ Ry [0C1-1] i-z}
rﬂ" . ‘/ ]
Bzx1 = I_h (- f)J i( xmm Rxm) [‘dQeJ j
Cexl = [h Qe ¢ f):l ‘( Xmm Rxm [dQe]
- Rymm [dQe (1-g’ )] i=1 + Rym [dQe(l—g’)] i—2}
IXDIFF = 3: i+ 1
k-1
k
X
vA
5 ¥ my -1 7 ¥ mir 1, k-1
my - Dyp
and similarly for [dQe(l f)]x, [113peQe(n f)] X e , and W

Dyp

| ¥'m [AQc(1-1] i, k-1 = [dQe(1-F)] i1, k-1
Cyx1 = hl(je ik

Byx1 = 0
Byx1 = 0
8*m
Cax1 = [hlc)e
IXDIFF = 5:

|

[dQ.(1-e"];, k-1 -

Dxp

[aQc(1-8"]i+1, k-1 }



&* =
my

and similarly for all other x derivative terms.

In the foregoing difference formulas, difference intervals with the following definitions were

used:
Dzm = Zx-Zx -1

R = Zy - Zk - |
(- Zk-2) (Zk- 12k -2)

R _ (Zk'zk—Z)
M (Z- 2o 1) (P17 2 -2)

Dxm = Xj-Xj-1q
R = (Xi'xi-l)
K- Xi-2) (Xi- 1-Xi-2)

R _ <Xi'xi-2)
KX ) (Xi-1-%i-2)

Dxp = Xi-Xi+1

" ) (Xi'Xi+2)
P (X=X ) (Xi+ 1 - X1 2)
_ (X - Xi + 1)
P XK 2) (X 1- K 2)
~ (Zk-Zk-l)
Rzm12 —m

37



2. ATTACHMENT LINE MOMENTUM
AND CONTINUITY EQUATIONS

These equations are solved in. a form directly analogous to that used with the 3-D equations.
The x-momentum equation and z-differentiated momentum equations are, respectively:

o* 1

m g+ —m, P + 2m, gy + 2m 0
-—=—, (pvef u — ' — uu — px =
/DeUe2 offyly PeUe2 hj X PeU62 y PeUe2 hy ¥
5*m ( ( ) ) 5* m p 2 6*m P
-— |prafrlWw + — (w >~ + — (w )
peUe2 \"e\"Z Y] y 7 pue2hz \ V' peUe? hp \ /%
N\ N
@b 2
+Sm o (w) ¢ Om g < ) 4 2fm 1 2K 0
oV P w 9 — Dzz-pU =
peUe2 z)y PeUez 31 u\Wz PeUe2 h3 7z 13,

® ©) ® @

Making the substitutions:

we have the following equations:

- {% [d(1-f’)]'} + A"+ By +Cx = 0

- {Ri;l (dgz") ’} + Az, +Byg, +C, =0

Replacing i derivatives by finite differences leads to the tridiagonal system:

Il
o

ay fj+1 + Ayl T A3 -1 +Ag

blj 82 +1 T sz 82'; + b3j 82'i _ 1 + b4j
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where

aj

82]

a3J

a4

by

bo.

b3

b4j

! [ (@) +1+ @)} di+1 +A]
X
n+1-m-1L (M+1-m)
| -1 _ {(;23:-+1+(~)\-} .\ {(_d\)_.)j'*"(g)j—l]] d; + By
M+1-M-1L (G +177) mom-1 2
! [+ {@+@4-1} 9-1 _A]
mr1-m-1 L (-mi-1) "

-, [{(@j P g { @) + 1+ @)

nj+1-M-1L (7 + 1) 5+ 1-1))
[(g)j+fg)j-1}}dj . K@j*@)j—l} dj—]]
M-"-1) -7 - 1)

1 [\(Q)j+1+(@j} dj+1 ]

+ A,

ni+1-m-1L (0 +1-1)
| —1_ | [{(93)?412“(.9)]'} + [(g.)j+'(g)j-1}] dj + B,
ni+1-M-1L (+1-15-1) (M- -1)

1 ()5 + (95 - 1} ]
—~ ~ d._ __A
nj+1-nj-1[(nj-nj-1) U

Cz

Again, as in the 3-D case, the coefficients A, B, and C are sums of contributions from the
various terms in the differential equations:

Ax = Ax;tAx2

Bx = Bx1 +Bxx1 * Bx2

Cx = Cx1+Cxx1*+Cx2*Cx3
Az = Azt A3

39



40

B, Bz1 +Bzx2 + B + B3 + By4

Cz = Cux2t+Cy5+Cyy

The continuity equation is eliminated by making the following substitution for (p¥):

1 ; :
o0 = i |5 [h30eUen=0], - h3peUed " nf -
+8*mh1oeUegy + hlh3(PV)w]
The individual contributions are:

1
= — * _f!
Ay hy dé my n(l1-£f")

1 5% _
By; = — d'86% 2-fy-— 40, (1-f"'
x1 hy mx"?( ) hU, [dTe ( )] X

*

6 m IT ’
" [aU, 1 -],

1
= - — %]
Cx1 = =1 d8%m,

d 5% —
A= —— 11— M5 U.(n- +ha 6% f -
X2 = {p—eUe (h3 5e Ue (n-0) 4 +h3 m, (f - D)

hihj

- &% h;g - —2 ov
mil] &5 PeUe walll

a [ s _
{__m [h3p—eUe(n-f)]X+h3 8*m. (nf' -f-1n)
hlh3 peUe X

- 6%mhig; - M PVwall
peUe

d’ { 8%m

_h_]h_?’-

=2 [hs 5. U, (1 - +he 6%
a0, [3pe e (n f)]x h3 mxf

hihz
o 135 ]
m 118z peUe wall

al
[¢]
]

6%

hj

|

Cx3=_

al
w



h
d *
A22=h—1 5mx17(1-f')
a .
BZZ = ]11 é mxn(l—f)
' 1 &% 4 T7 '
Byx282+Cx2 = _Ix_l ﬁ]: (l'f)(dUegz)x

d 5% —
A,z = M [h1p.Ua (p-D]+h36* f -
23 hyh3 {,EéUe [13pe e f)]x 130" my (n f)

e PVwall }
-hyo* -hyt
l() ng 11 13 ,DeUe

dl
By3 = s { same as Az3 }

B,4 = -Kgz|8%md(1-1)

_ *m (w\2 'm (w
Cps = -—=10 (W )2 -2 (W,
haUg~ hUe X

*mK31(w "
- %‘e (weZ )+ §*m K13,

Il

Cp7 = - %Kiz, d(1-)2

Replacing the x derivatives by finite differences results in the following:

1 = 1: Infinite swept wing option

[a0.(1-))x =0
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I
o

[h35:0c (n - D]«

Bxxl = Cxx1 = Bzx2 = Cyx2 =0

5*m, =0
(Wez)x‘ 0
1=2 o———
4= i=1 =2 X
® _§%
or < Simp7%7m)
X Dxm

and similarly for [aTe (1 - )] » (13520 (0 - D)y , and (Wez)x _

E3
By = -—20m
h15 Dxm
Cop = O7my [dTe] 2 - [4Te (1 - 1]
xx Ry, Ue, Dxm
d25*m ’
Bix2 = — =% (1-f)
h1, Dxm
[dUc 2,1 1
C = -B = —€>ZJ 2
X2 ZX2 [dUe]2
1>2 —_—0—O0—R—
== -2 -1 i1
§* my T (Rxmm ~Rym > 5*mi - Rxmm S*mi—l

and similarly for [dTe(1 - )], [h3peUe (n- D) x ,and (wez)X

+R

xm 97m; _ o



Bxx1

Cxx1

Bzx2

Czx2

_ 5*m7
thﬁe_

(R~ Rum) - 000

h I_U-e 1 ‘(Rxmm - Rxm) [dUe]i

R (406 (1~ 9] -1+ R (605010312

&* , —
_[hlfr]r; (l‘f)]i ((Rxmm'Rxm) [dUe]i}

8% _
- =L (1-f -R dU.g,'1;
[h]Ue ( )]i { xmm[ egz]l—l

+ Rym [d'Uegz']i - 2}

In all of the above expressions, the difference intervals have the same definitions as in the

3-D case.
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3. 3-D THERMAL ENERGY EQUATION

The equation in total enthalpy form is:

— 1 1
- {pvefhhy} y + (pv)Hy + h_l puHy + 1;——

® @ ®

where

pwH, - Iu'r],y—{wrjg}y =0

® 6 ©

For purposes of computation, it is treated as an equation for the density ratio d. Like the
momentum equations, it is linearized by successive substitution, the linearized equation

taking the form:

Y Y ! '
ST ¢d] +Ad' +Bd+C = 0,
Pe Qe'Y‘l {~h
where
- %n
Qh Rd ’

and where the coefficients A, B, and C contain the results of replacing x and z derivatives
by finite differences. Replacing the y or n derivatives by finite differences results in a tri-

diagonal system:

1T Ay Tasdy
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where

. + .
(Qh_] +1 th) FA
n_] +1 '”OJ

- 1 v v
aj], = —— =
bomjei-m-1 LmPe Qe y-1

T v -
a _Pe Qenv-! <9hj+1+2hj> + (th"-ibhj_l) +B
2 = =1 ~3-°
i omjer-mi-1 [\ Mj+1om n-nj-1 /|

A Ohe + 0L

a3.=_1_— _p—eQe'Y ~7  ~1 l-A
b o+ -1 v-1 \n-n-1

] i | i ]
ag. =C

J

The coefficients A, B, and C are sums of contributions from individual terms in the differ-
ential equation:

A= Ay+tA3tAg
B = By + B3 +Byx3+Bg+Byy
C=Cx3+Cpq+C5+C¢

The individual contributions are:

Ay = 2V [ﬁe766771 oy M2 5,03 [(1—f’>2+(1-g'>2]dl

peQe -
By = i IvMoozﬁ‘e@e3 [(1-tH+1-gH]d
peQe
where
(pv) 1 8% m _ _ ,
= - = -0] 4 -h38* . (nf - )
'DeQe hih3 { peQe [13peQe(’f? f)] x 701307 my
'm 50 . : (PVIw }
-—= |[h - -hp8* -g)+ Il
7.0 [h15¢Qe (m-28)] 2 -1y m, (ng'-g) +h3 2e0s
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1 v Y — = '
-1 —— 8%y (1-1) -y Mo? 55 Q3 (1- 1) na*

A3 ~ oo® P Qe
S hll—e Qe 7_1 lTlx e < ITlx
[(1-f')2+(1-g')2]d} |
1 — Y ' ( ’);_1
Byad+Cys = — 750 0% —(1-f){_ }
x3 x3 hl e<¢ m 7_1 fe d X

1 _ _
By = +h—1 {7 Moo? Qg2 8% (1 - 1) [(1 - {dQe(l -f’)}x

N

+(1-g) ‘d@e(l —g')} ot n B*mx 66 |(1 - + (1 —g')g"} d]}

5*m

1 v ) — = 4 !
Agq 2_‘,0_ _ ——nﬁ*mz (l-g)")’MoozpeQe3775*mZ(l‘g)
e

[1-2+q -g’)2]d}

Bad+Cy = - - Q8% 1 1-gh| 771
Z4 Z4 h3 pe e m 7_1 p—e d .
B, =h—; {7Mm2 502 8% (1-g) [(1 —f’){déea -f’)]Z+ (1-g) ‘dée
a-g)} ,+ 5 8%, Qe[ -0 1 1 -g’)g”}d]}
m
Cs5 = -7 Moo? pe Qe3 {(1-f’)’r‘1}'

Cg = -vMo? peQe3 ‘(1 -g')%}

Replacing the x and z derivatives by finite differences results in the following expressions:

IZDIFF = 1: k-1

k

Z




R o

_ Qe -} - {dQe (1 -} k-1

DZIT[

TR,
and similarly for {dQ (1 -g)}_ and {h15eQc (n-8)} -
Byg = [p_eéea*m X (l‘gl)]k [17_&37-1]1(

v-1
. r_ - ¥ T -17
Cpa = -| 5o Qed*m — (1-¢' .’ d
z4 I_peQe m7_1( g)_lk l_pe -Jk—l
IZDIFF = 2: +k'2
k-1
k

YA

{dée(l —f')lZ = (Rzmm 'Rzm) {dée(l -f')\k - Rzmm |dée(l ‘f’)} k-1
+Rzm{dée(l—f’)}k_2 :

FR—— ) { = ]
and similary for {dQe(l -g )}Z and {h1Pe Qe (n-8)}, -
— = .. Y , _v-1
Byq = [ﬂeQea*m — -g)] (Rzmm'Rzm)[Pe ]
v-1 k k

= s Y ) — -1
Czq = [Pe Qed™m P (1 —g):l {‘ Rzmm [Pe d]k—l
- k

IXDIFF = 0: infinite swept wing option

[dée(l-f')]x {dée(l-g')}x ={h3p—ec_2e(n-f)}x -0

By3=Cx3 =0
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IXDIFF = 1: i-1 i
A = L — @

{dée(l-f')} _19Qe -1} i- dQe -} ;-

X Dxm

and similarly for {dé e(l -g')}x and {h3 Pe Qe (n- ﬂ} X -

= .Y , _7-1
By3 = [ eQed¥m y-1 (l‘f)]i [pe ]i

= .Y — -1
Cx3 = - *m —— l—f’)] [ d]
x3 l:eQe m y-1 ( i Pe i-1

IXDIFF = 2: g2 it i

‘d@e(l - ) }x = (Rxmm - Rxm> [dée (1- f,)}i - Rxmm ldée(l _f,)}

+Rxm{d6e(1—f’)}i_2,

and similarly for {d(_Qe(I —g')} x and {h3 e Qe(n - 0} X
—_ ! -1
By3 = [Pe Qe 6%y —7—1 (1 —f):|i (Rxmm 'Rxm) [p_e7 ]i

_ Y : — -1
Cx3 = [PeQeﬁ*m S-1 (1 'f):l. {—Rxmm[pe d] i-1
; -

_y-1
‘{Rxm Pe d]i—2=

IXDIFF = 3: i i+1

i-1



|2 1aQe-0) k1 -1dQe -0 141, k-1
Jx

’

Dxp

and similarly for {dQe (1 - £} x and {h3 5 Gem-D} 4.

Byz3 =0
r v ]
Cy3 = | pe Qe 8% —— (l-f’)J
x3 le e®'m -~ ik
-1 _y-1
{[Pe d]i,k—l‘[ﬂe d]i+1,k-1}
Dyp
IXDIFF = 5: i-1 i
k-1
k
X
A

DXI'I]

and similarly for {d(je(l - g’)} x and {113 Pe Qe(n- f)} X -

Bx3 =0

co = [0 3 0r])
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4. ATTACHMENT LINE THERMAL ENERGY EQUATION

The development here is directly analogous to that used with the 3-D equation. The basic
equation is:

_ 1
- [pVef‘hhy }y + (pV) Hy + Ep uHx —{U.rlly =0,

@ @ ® @

which results in a linearized equation for the density ratio d:

in which
A= Ay+Aj3
B = By + B3+ By3
C=Cy3+Cy

The resulting tridiagonal system is:

aijdj+1 + azjdj + a3jdj_1 +a4j =0

aj; -1 ‘/J—eYUe ! <~J+1 NJ) +A
] N+ 1 -7 v-1 \nj+1-m
P7 6—7 ® 7]
€ +
-1 . Oh: oh: T Oh;
SRGLE I CNIES B [

1 M+1-M-1 TH+1-7 n-n -1

.+ dh. ]
az. = _—l — ‘ﬁ_)_eﬁe Y <9hj th - 1) -A
] nj+1-M-1 y-1 nj-Mj-1 i

where




Cre

=

.

The individual contributions to A, B, and C are:

V) | _v= 7 —
Ay = U, —— + yMo2p. U3 (1-f)2d
2 peUe {pe e'y—l 7 pe e ( )
_ '(PV) 2 —~773 NPT
By = YMo2 5, T3 (1-f) 1" df
PeUe

where

(ov) _ { m [h3p—e U, (Tl‘f)]x'h?: S*mx_(nf"f)-f-S*mhlgz

PeUe hyh3 _peUe
(V)
+hph
13 peUe }
1 IT 7 ] —_ TT !
A3 = {-pJUe o 1 8%*m, (1) -y Moo? 5g Ue3n 8%y (1 -f)3d}

IR S— - v , _7-1
BX3d+CX3 'h—l peUesmﬁ (l‘f) Pe d X

1 o , _ , n 7T 11
B3 =h_1 ¥ Moo? g U2 6%, (1-1)2 {[dUe(]_f)Jx+6“‘m6*meedf}

Cq = -7 Ma? e Ug? l(l—f’)f'l}

Substituting finite differences for the x derivatives yields:

I = 1: Infinite swept wing option

{dUe(l-f’)]x = ‘h3ﬁ‘eﬁe(n—f)}x =0

BX3 = Cx3 =0
1= 2 7 3 %
{dUe(l -f')} = {{dUe(l -l - [dUe (1 - 1) 1]
X Dxm
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and similarly for { h3 FeUe (1 - 1) }x

By3 = 7feﬁes*mi(l“f’). 13_67_1 ./ Dxm
v-1 i i

(dUe(l —f’)} - <Rxmm_- Rxm> {dUe(l -f’)}i - Rymm {dﬁe (1 —f’)'
X
+ Rxm{dﬁe(l-f’)}i_z- ,

and similarly for {h3p‘eﬁe (n-9 } X

B - |

—_ - TY * 7 ’ _7-—1
Cxg = [PeUet m 27 (1-f) ; -Rymm |Pe d io1

— y—1
¥ Rxm[p67 d:li-2>

5. 3-D 6* EQUATION

S
cl

y , -1
e eﬁ*m_y-_l(l'f)]i (R"mm'R"m>[p67 :|i

The equation is:

l:h3 {:‘Teﬁea*‘ﬁeéeﬁ*l}] + [hl {ﬁeWea*'ﬁéaeﬁ*B”
X z

— = PwVw
= h1h3 p.Q
IBeepeQe
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When derivatives are replaced by appropriate difference expressions, the equation becomes:

[ALX 5% + DDX] + [ALZ 6* + DDZ] =hyhj 'E’eQe :WQV‘M ’
ev<e

or

-(DDX + DDZ) +h1h35.Q, %:v
(ALx +ALz)

where A] x, Dpx, Dpz, and Ay 7 depend on the types of x and z differencing used as
follows:

8% =

IZDIFE = 1: k-1

k

z
N

Dzm [hlﬁeWe]i’ k

1

] —~ —_—
= - p * - 0 ﬂ: * .
DDZ Dzm { [ hlpeQeS "3] i K [hl (peW66 - pEQ36*3)]1, k-1

IZDIFE = 2: k-2

ApLz = (Rzmm - Rzm) I:hlﬁewe] i,k

Dpz = (Rzmm' Rzm )[‘hlﬁeae&i?]i, k-Rzmm [hl (pewe 6%

-5,Q,8 *3)]i, k-1 +Rom [ (5 W57 - P.Qc8 *3)]i, k-2
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IXDIFE = 0: Infinite swept wing option

Apx=0
Dpx =0
IXDIFE = 1: —Oo—®—,
- i-1 1
1 L
ALX = 3 [hSpeUe]i, k
Xm

Dpx = Dl {['1135e6e3*1]i,k'[h3(ﬁel—JeS*-ﬁeQeS* l)i—l,k]
Xxm

IXDIFE = 2: —0———o0—®—

ALY = (Rxmm - Rxm )[h3ﬁeUe]i, k

Dpx = (Rxmm -Rym )['h3ﬁe6e5*l] ik~ Rymm [QI] i-1,k

+Rym [Q])i-2,x -

where
[Ql]i’ Kk l:h?)(/‘—)-eﬁe‘s:h - '56635*1)] i,k

IXDIFE = 3: i i+l

1

Drp :[Ql]i,k-l - [y ko

Dpx



IXDIFE = 5: i-1 1

k-1
k X
Z
Arx = 0.
Dpx = 5 {[QI]i’k_l - [ -l,k—l}
xm

Cross-Over Velocity Profile:  In the special case when the u velocity profile is of the cross-
over type (u is both positive and negative along the same column) the zone of dependence
of the 6§ * equation is not properly covered by any of the above difference expressions. In
this case, a zig-zag difference expression is used when the required points are available:

i-1 i i+1
k-1 oO—

k —O-

z
ALx = R;v(.pm [hy_’eﬁe] i, k
Dpx =Rxmp {[QIJ i1 k-1 7L 1}

* Rypm { [-h35:Qe8%1] i,k (1] i-1, k' ’
where

[Qi; x = [h3(5,0.8% - 5.8,6%1)] -

R = ~ Dxp

xpm Dxm (- Dxp +Dxm)
R _ Dxm

xmp 'Dxp (‘Dxp +Dxm)
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When the point at i - 1, k is not available, an alternate expression involving three points
on the previous spanline is used:

i-1 i it+1
k-1—o0 O
k
X
z
Apx = 0
Dpx = Rxmp [Q1] iF1,k-1 7 (Rxpm - Rxmp)[QI]i’ k-1

- Rxpm [Ql]i_ 1,k-1

6. ATTACHMENT LINE 6* EQUATION

The equation is:

[113 {ﬁe-ﬁe(a* _ 3*1)}]X+hl [ﬁeWeZEs* _56_065*32]
— PwVw
= hha70.U, ——
173 "e~e PeUe

When the x derivative is replaced by appropriate difference expressions, the equation

becomes:
[ALX 6% + DDX] * [h]ﬁewez 6% - h1‘7eﬁe 6*32]
= b hy 7.0, S% :
or

_ = . _—= PwYw
(h]peUe 5’*32 - DDX)+ hlh3 peUe —peUe

 (ALxthig W)

5*

where Ay x and Dpx depend on the particular x-difference expression, as follows:
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ey
A

I =1:
I =2
1> 2

Infinite swept wing option. In this special case, the equation reduces to:

i

S

PwVw
E —— £ —_—
8 (5 3z th3 PeQe )

o—&——
12 X

3

€z

hLp U
3Feve
ALX=’——

Dym

1 — _
Ppx = 5 — {(‘h3f’eUe5*1)z - [hsﬁeUe(ﬁ*'-ﬁ*l)]l}

ALX = (Rxmm - Rxm) [ll3ﬁeﬁe]i

Dpx = (Rxmm - Rxm) [‘ 1]35668 5*1]i

“Rymm [QI]1_1 * Rxm [Qlji -2
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Generate boundary layer grid
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Calculate 3-D boundary layer flow
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Calculate final boundary layer flow
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2. Boundary layer program—lower surf,

4

Set up 6* for next iteration
2nd interface program
1. Interpolation
2. &% under-relaxation
3. Convergence test

Piotting programs

6*
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End

Figure 1.—Viscous-inviscid Interaction Procedure
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Figure 2.—Curvilinear, Orthogonal Coordinate System for Boundary
Layer Calculations on a Swept Wing




Initialize solution
Use adjacent known stations

of LOOp

=1

5 4

Adjust scale length 8. *
(except 1st iteration)
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Solve energy eqn or use
algebraic formuias

v

Calculate integrals f, g, 5m*

R

Calculate derivatives f'', g”’

Solution
converged?

Calculate output quantities

End

Figure 3.— Iterative Procedure For Boundary Layer Solution of a Single Station
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Figure 4.—Difference Molecules for Positive and Negative u.
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Figure 6.—2-D Solution for Bauer’s 60° Spillway Flow
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Figure 7.—Results for 3-D Test Cases Generated From 2-D Solution for Bauer’s Spillway Flow
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Figure 8.—Hypothetical Flow on Flat Plate with Protruding Cylindrical Obstacle (Trondheim Case A4).
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Figure 13.— Comparison of Predicted and Measured Boundary Layer Quantities Along
Central Row (C) of Measuring Stations for Data of Vermeulen
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Figure 29a.—Quter Inviscid Flow Solution for Lower Surface (No Suction)
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Inviscid streamlines

Figure 30a.—Outer Inviscid Flow Solution for Upper Surface (With Suction)
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Figure 30b.—Boundary Layer Solution ior Upper Solution (With Suction)
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Figure 31a.—Outer Inviscid Flow Solution for Lower Surface (With Suction)
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Surface streamlines
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Figure 31b.—Boundary Layer Solutions for Lower Surface (With Suction)
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Inf span analysis
at root
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Figure 32.— Contours of Constant §* Predicted for a Transport Type Wing
Using Two Different Wing Root Initial Conditions.
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Figure 33,—Surface Streamliines for Lower Surface Calculated
From Inviscid (Bare Wing) Outer Flow
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